ارزیابی عملکرد شبکه عصبی مصنوعی در پیشبینی اکسیژن محلول و فسفر کل در حوضه آبریز سد ایلام
نویسندگان
چکیده مقاله:
در این تحقیق از مدل شبکه عصبی پرسپترون چند لایه(MLP-NN) برای شبیهسازی اکسیژن محلول و فسفر کل در حوضه آبریز سد ایلام استفاده شد. مدل شبکه عصبی با استفاده از دادههای آزمایشگاهی سه زیرحوضه سد ایلام در سالهای 89-1388 طراحی گردید. متغیرهای ورودی شبکه عصبی برای مدلسازی اکسیژن محلول شامل اسیدیته آب، هدایت الکتریکی، کل جامدات معلق، دما، فسفر کل، سولفات، آمونیوم، آهن و نیتروژن کل بودند. متغیرهای ورودی برای شبکه عصبی برای مدلسازی فسفر کل شامل فسفات و دما است که در یک نقطه در نزدیکی محل بدنه سد و در عمقهای مختلف اندازهگیری شدهاند. عملکرد مدلها با استفاده از شاخصهای ضریب تبیین (R2)، خطای نسبی و مجموع مربعات خطا(SSE) ارزیابی شد. با توجه به نتایج شبکه عصبی تمامی متغیرهای در نظر گرفته شده بر روی مدلسازی اکسیژن محلول مؤثر بوده و مؤثرترین پارامتر میزان کل جامدات معلق بود. در مدلسازی فسفر کل نیز فسفات مؤثرتر از دما بود. ضریب تبیین بهدست آمده بین مقادیر شبکه عصبی و مقادیر اندازهگیری شده برای اکسیژن محلول813/0 و برای فسفر کل 940/0 بود. در ادامه، نتایج حاصل از مدلهای شبکه عصبی با نتایج حاصل از مدل دوبعدی متوسطگیری شده عرضی CE-QUAL-W2 مقایسه شده است. براساس نتایج، مدل پرسپترون چند لایه (MLP) در پیشبینی متغیرهای کیفیت آب دقت بالاتری را نسبت به مدل عددی نشان داد. نتایج همچنین نشان داد که شبکه عصبی قادر به پیشبینی تغذیهگرایی با دقت قابل قبولی است و میتوان از آن بهعنوان یک ابزار مفید برای مدیریت کیفی آب مخازن استفاده نمود.
منابع مشابه
ارزیابی کارایی مدل تلفیقی شبکه عصبی مصنوعی و آنالیز موجک در پیشبینی غلظت شاخص کیفی اکسیژن محلول در مخزن سد بولدر
مدیریت کمی و کیفی منابع آب به منظور تامین تقاضا برای کاربریهای مختلف از رویکردهای مهم سیاستگذاری در هر کشور است. در این راستا پایش کیفیت آب مخازن سدها به عنوان یک گام اساسی در مدیریت این منابع با ارزش اهمیت ویژهای دارد. دراین تحقیق مدلهای شبکه عصبی مصنوعی، رگرسیون خطی چند متغیره و مدل تلفیقی شبکه عصبی مصنوعی با تبدیل موجک بمنظور پیشبینی غلظت اکسیژن محلول در مخزن سد بولدر واقع در ایالت کلرا...
متن کاملارزیابی دقت روشهای شبکه عصبی مصنوعی و عصبی- فازی در شبیهسازی تابش کل خورشیدی
Solar radiation is an important climate parameter which can affect hydrological and meteorological processes. This parameter is a key element in development of solar energy application studies. The purpose of this study is the assessment of artificial intelligence techniques in prediction of solar radiation (Rs) using artificial neural network (ANN) and adaptive neuro-fuzzy inference system (AN...
متن کاملمقایسه شبکه عصبی مصنوعی و مدل HEC – HMS در برآورد بارش – رواناب در حوضه آبریز رودخانه اعظم هرات
یکی از روشهایی که در زمینه های مختلف علمی استفاده شده و می تواند فرایند پیچیده بارش – رواناب را شبیه سازی کند، استفاده از مدلهای شبکه عصبی مصنوعی است. هدف این تحقیق بررسی کارآمدی شبکه های عصبی مصنوعی در شبیه سازی فرایند بارش- رواناب و مقایسه نتایج آنها با مدل HEC – HMS در حوضه آبریز رودخانه اعظم هرات در استان یزد است. داده های مورد استفاده در این تحقیق شامل بارندگی روزانه به همراه دبی روزانه و ...
متن کاملارزیابی عملکرد مدل های شبکه عصبی مصنوعی و رگرسیون چندگانه در سنجش کربن آلی محلول در آب
چکیده زمینه و هدف: اندازه گیری و پایش کربن آلی در محیط های آبی یکی از شاخص های مهم کیفی در پروژه های مدیریت محیط زیست، پایش کیفی منابع آب و تامین آب شرب است. در این تحقیق، عملکرد مدل شبکه عصبی مصنوعی و مدل رگرسیون غیر خطی چندگانه با هدف سنجش پارامتر کربن آلی در منابع آب با حداکثر ضریب همبستگی محتمل و حداقل تعداد پارامترهای ورودی، مورد مطالعه و بهینه سازی قرار...
متن کاملارزیابی کارایی مدل تلفیقی شبکه عصبی مصنوعی و آنالیز موجک در پیش بینی غلظت شاخص کیفی اکسیژن محلول در مخزن سد بولدر
مدیریت کمی و کیفی منابع آب به منظور تامین تقاضا برای کاربری های مختلف از رویکردهای مهم سیاست گذاری در هر کشور است. در این راستا پایش کیفیت آب مخازن سدها به عنوان یک گام اساسی در مدیریت این منابع با ارزش اهمیت ویژه ای دارد. دراین تحقیق مدل های شبکه عصبی مصنوعی، رگرسیون خطی چند متغیره و مدل تلفیقی شبکه عصبی مصنوعی با تبدیل موجک بمنظور پیش بینی غلظت اکسیژن محلول در مخزن سد بولدر واقع در ایالت کلرا...
متن کاملارزیابی دقت روش های شبکه عصبی مصنوعی و عصبی- فازی در شبیه سازی تابش کل خورشیدی
تابش خورشیدی از پارامترهای مهم اقلیمی است که با بسیاری از فرآیندهای هیدرولوژی و هواشناسی ارتباط مستقیم و تنگاتنگی دارد. این پارامتر از ارکان اساسی توسعه تحقیقات کاربردی انرژی خورشیدی به شمار می رود. مطالعه حاضر به منظور ارزیابی مدل های هوش مصنوعی در پیش بینی مقدار تابش کل خورشیدی رسیده به سطح افقی زمین، انجام گرفت. در این تحقیق شبکه عصبی مصنوعی (ann) و سیستم استنتاج تطبیقی عصبی- فازی (anfis) جه...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 27 شماره 1
صفحات 159- 172
تاریخ انتشار 2017-05-22
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023